Back to Top

 Skip navigation

Chapter 9 KLEMS

Open in Excel:

This chapter focuses on the KLEMS (Capital, Labour, Energy, Materials and Services) methodology for measuring productivity. The data sources used and the challenges that had to be overcome are examined. KLEMS-based analysis on key industries in the Irish Economy are also presented. The Gross Output of some firms comes from the sales of intermediate goods to other firms and therefore some outputs are counted more than once in the firm-by-firm accounting, but these are netted out in GVA. While efforts are made to exclude intra-industry sales at the sectoral level, this can mean that the estimates at the level of the overall economy are less reliable. Accordingly, for the KLEMS Gross Output-based estimates of productivity growth, a total analysis for the entire economy is not presented as it would be difficult to calculate and of uncertain quality. 

KLEMS is a framework where changes in productivity are measured in terms of Gross Output as opposed to Gross Value Added (which is used in the core productivity accounts presented in previous chapters). Gross Output growth is broken out into contributions from Energy, Materials and Services, in addition to the factor inputs of Capital, Labour and Multi-factor Productivity. Energy, Materials and Services are classified as intermediate inputs and the KLEMS framework produces indicators of their critical contribution to productivity growth (see Table 9.1 below). The framework can also provide useful information on the interaction between different industries.

Table 9.1: KLEMS Analysis 2019

How KLEMS Estimates Differ from the GVA-based Estimates of Productivity:

Energy InputMaterials InputServices InputCapital InputLabour InputMulti-factor ProductivityGross Output
2000-1.310306294104542.210787091108091.103233018139651.105216227736975.15930923471441-3.263860491157495.00437878643707
20010.9900176032597813.567562117288042.629916756702570.743394734280222.01508735345063-1.341886726517258.60409183846399
2002-0.112568269721354-0.288406479043115-0.587938509287080.4600928090155290.203466495195190.103846631312284-0.221507322528544
2003-0.580534187087245-1.15581958270809-3.377469359315880.529682640039871.020857735377751.14573461270968-2.41754814098391
2004-0.8367598346189593.634203992120140.7103885859754110.4037627902416383.652946279025870.4452756481160998.0098174608602
2005-1.01353904540470.366544045591827-0.7313678129147371.182310432531084.84603605696452-1.141263239848643.50872043691935
20060.1201793341778920.38035898161383-0.5743519742805021.574153756142684.0911698215177-3.396785102697562.19472481647404
2007-0.3014910031433786.164204459642933.563984005158151.429673547597461.04182418377694-1.947623418174879.95057177485723
2008-2.493170988701798.452621099407491.315812765245070.000547549548348884-5.604352534984723.759191895533575.43064978604797
2009-0.07142802260985391.096594274522191.566870030233890-16.39581030610324.99227719637321-8.81149682758372
2010-1.2561916658458510.59955675250165.387579700924570-11.63284607742594.093615784061287.19171449421569
2011-1.00011276036556-7.48332641135064-7.69922137198120-1.64056617807911-1.46319678897778-19.2864235107543
2012-3.06653410053586-25.8926602752396-9.164762657074610-2.47314055910357-0.836265154965404-41.433362746919
20131.257231980731456.45933798442531.713686190118680.09625517870277681.33033823206362.3279608936744413.1848104597163
20140.005549590471559596.3390132149844812.1584308938597-0.414795786750665.06500820623196-1.5209497461741321.6322563726229
2015-0.11432826224973-0.5054562443272084.372876290256730.6028043517120254.16949364810551-2.135231714536936.3901580689604
20160.3546135365233396.3023944488333817.58016622042650.9237046197464642.795553392312140.66277408112115928.619206298963
20173.763077813013593.957147464205120.08846989664272731.031797671796022.257619720239911.2522908698792412.3504034357766
2018-1.102441218698553.294464788137672.889306017050141.717993318361443.20104875464354-0.4364219219758789.56394973751836
20190.9139437933234972.17327640388051.906003249163462.268109885598440.388380358176620.1326757123954727.78238940253799

Get the data: PxStat PIA10

The chart above depicts Gross Output in the Construction Sector broken down by its contribution from KLEMS inputs. It is compared with its GVA counterpart below:

X-axis labelLabour InputCapital InputMulti-factor ProductivityGVA Growth
200011.95384495902022.56072718873659-8.072328135838126.44224401191868
20014.758663461249221.75742199773358-3.376776661439813.13930879754299
20020.4851514813894361.096434739114340.2480427309215351.82962895142531
20032.31141259155931.197020631340072.555588535821696.06402175872105
20047.902972288608970.8733215328328680.7741823510667659.5504761725086
200510.13196806147422.47279858008893-2.643270926839379.96149571472373
20068.227781611039123.16380339524894-6.827605524983974.56397948130409
20072.180669916221312.94462569991937-4.173473096906120.951822519234562
2008-13.14524086156620.001200353905576017.22443634126308-5.91960416639756
2009-45.706195450829013.9142806280225-31.7919148228064
2010-43.9470127099122013.6808809904669-30.2661317194453
2011-7.929824522051460-7.32000570641769-15.2498302284691
2012-8.2612087530539406.27674999106311-1.98445876199084
20133.264631355323040.2299321509184695.373610427964178.86817393420568
201412.342239588728-1.01851389354893-4.72663498756996.59709070760912
201510.4120816588371.50531333983499-5.483187726368836.43420727230311
20167.375140126278672.436053680210.39120476307346410.2023985695621
20176.115558166328442.779508789898023.6313972782937912.5264642345203
20188.384881796556214.50021822261732-1.7438622898280811.1412377293455
20191.016799199407385.938025101660820.2844509987150347.23927529978323

Get the data: PxStat PIA09

The main difference between the KLEMS and GVA models of productivity is the inclusion of intermediate inputs in a more detailed series that estimates MFP based on Gross Output rather than on GVA in any given industry. The two charts above compare the KLEMS and GVA models of productivity for the Construction sector. The KLEMS model offers a more detailed analysis in terms of what is driving growth and productivity in the industry. Along with Labour and Capital, additions to Energy, Materials and Services can also explain economic developments in this sector in the KLEMS model. This level of insight is not available from the GVA model of the Construction sector which reports a relatively large MFP.

Value-added MFP measures the unobservable drivers of productivity not related to the primary factor inputs of Labour and Capital and is sometimes known as the Solow residual. The KLEMS model minimises the MFP estimate where MFP = Output – Capital – Labour – Intermediate Inputs while the GVA model excludes these intermediate inputs and, in many instances, results in larger MFP. In theory, the inclusion of the additional intermediate inputs in the KLEMS model should yield a more accurate MFP estimate as it minimises the Solow residual by including more explanatory variables.

In practice, the inclusion of intermediate inputs sometimes makes the KLEMS results more susceptible to data quality issues and for this reason the KLEMS MFP estimates are considered supplementary and experimental. The Gross Output series in the KLEMS model is considerably more volatile than the GVA model by nature; the KLEMS series uses a gross measure for output while GVA is in practice a net measure.

In terms of the data sources, both KLEMS and GVA methodologies estimate Capital Services using the CSO's Capital Stock of Fixed Assets and Labour estimates are sourced from the Labour Force Survey (LFS). The addition of intermediate consumption estimates from the Supply and Use Tables (SUT) was necessary for estimating MFP on a Gross Output basis in the KLEMS model. Using the SUTs in the KLEMS analysis may have also contributed to volatility and certainly highlighted data gaps where annual SUTs don’t exist for some earlier years.  This necessitated additional estimation and adjustment in the creation of a complete time-series. For these reasons, GVA estimates are considered to be more robust and deliver more consistent estimates for productivity analysis and the KLEMS based productivity estimates are considered experimental for Ireland.

Data Sources

In relation to data sources, as indicated above Capital and Labour inputs are sourced from the CSO’s Capital Stock publication and LFS which are also used throughout the publication in all productivity presentations. The intermediate inputs are obtained from the SUTs and used together with Capital and Labour inputs to estimate productivity on a Gross Output basis. The SUTs provide a detailed picture of the transactions in goods and services by industries and consumers across the Irish economy in a single year. They also highlight the inter-industry flows that lie behind the National Accounts main aggregates. The Supply table contains estimates of the supply of goods and services (products) by domestic industries as well as imports of goods and services while the use table contains estimates of the use of products by domestic industry and by the final demand sectors[i]. The SUTs are broken down using the NACE Rev. 2.0 classification for economic activity with a 21 sector presentation of the economy, results can be found on PxStat.

[i] (Final Demand comprises consumption by households, government, non-profit organisations serving households (NPISH), gross fixed capital formation (GFCF) and exports)

KLEMS - The Challenges

The production of a single consistent presentation of the input data for Energy, Materials and Services from the SUTs for the entire nineteen years was therefore challenging due to gaps in the data series for some years.  There were also major changes in the National Accounts Methodology and Classifications. The years 2000-2019 witnessed the reclassification of economic activity from NACE Rev. 1.1 to NACE Rev. 2.0 and the change from the European System of Accounts (ESA) 1995 to ESA 2010.  Accordingly the production of the estimates presented here entailed several steps to ensure data quality and consistency[1] between the KLEMS and GVA frameworks. The series is nevertheless considered experimental.

[1] The Domar methodology was used to validate the KLEMS results in the publication. See Appendix for more information.

Energy InputMaterials InputServices InputCapital InputLabour InputMulti-factor ProductivityGross Output
2000-3.637528547001360.3693220610449510.3031950404335523.69264878189136-3.923987602650752.72862110705413-0.467729159228123
20019.705389231427730.8256165243049990.9719523751778384.672678064634722.73037667991992-2.2993030425334916.6067098329317
2002-5.577974639669975.427532824045112.496223460985995.153600106567510.793947699208456-3.355419171721114.93791027941598
2003-0.289184516099738-5.54029804294531-2.432584049219624.726629693243462.59910300039915-5.25021547705698-6.18654939167904
20040.86182773340132-1.094520147355730.3991017238353682.841301477197770.606148388667652-0.9207682693922552.69309090635414
20051.730713125235340.5715283418094033.163032915542393.58595586375699-0.906993241190063-1.1190673281677.02516967698706
2006-0.8033094462089081.6938007219524511.14942554809362.44143759208463-2.676505106008140.78749418960553712.5923434995191
2007-24.0767095607862-4.03065723895886-9.614895888038582.405695380900971.3508166189363-1.90201212202269-35.8677628099691
200829.15042920383891.775747579547443.899120395036421.984941422801511.23358291682433-3.6805165758625934.363304942186
20097.52474909628169-3.58867373296799-4.698909812099520.1489804370374880.8956285192297-1.0274012882454-0.745626780764038
2010-15.57607324560431.74734088034854-0.0936456891833742-1.21344675676416-4.902424076197079.313161122545-10.7250877648554
2011-15.5794702895683-0.679254566661307-5.02732228424731-2.05172385168651-2.133782217439171.91994285566389-23.5516103539387
201220.60036093100810.8990622898077622.781620434205740.0217914250621196-2.734482073409811.4585293939482423.0268824006222
20132.118958278285660.9522520169860851.001601243847221.841532748307362.30517406219764-7.06366501929191.15585333033207
2014-12.83986063926136.280147803726923.590200850807360.795195966932515-0.0308795903312666.504260961159544.29906535303374
20150.95343610631521-0.2819039462628275.150780544359751.86779982170289-0.763457615669394-1.223689194625095.70296571582055
2016-6.232670261553573.729432086001293.339321720299522.117289777443340.0637790102198007-0.7930104864838772.2241418459265
2017-0.000257841461892793-6.3882837423068616.42074078700620.5754998768129160.8690296429276252.290024878221913.7667536011999
2018-0.04686370490775621.589627304172619.479113366312941.884934021659180.75891948460876-0.27758618484227413.3881442870035
20191.990542119960750.02307996840107280.1376282581397671.55503674553580.558371210619354-1.866652501866712.39800580079003

Get the data: PxStat PIA10

The above chart shows Gross Output growth in the Electricity, Gas & Steam sector broken out by the KLEMS inputs. Unsurprisingly, the largest contribution to Gross Output over the entire period came from Energy. Looking at 2019, the contribution of Energy to Gross Output growth was 2%. However, at times the trend in the Energy input seems to be not entirely in line with the economic cycle, particularly in 2008. Recent years have seen increased contributions from Materials and Services and declines in the contribution of Energy. As it is important to consider the factors that affect the costs of intermediate inputs, i.e. producing electricity, further analysis of the Energy market are presented below:

X-axis labelBrent Crude Electricity Energy Input
200046.9609229713901-13.8286303931094
2001-14.806562710389534.9376561753546
20022.37479958770495-22.1502886766942
200314.3123651831718-1.24716052190632
200428.30193194404443.36736938462693
200535.20273303816255.45347669333865
200618.3180186736944-2.2828282049543
200710.661023729874-95.47087404619
200829.3792507304015102.062966312677
2009-45.561466362872119.0045589683385
201025.2502835940454-44.6527898143422
201133.282235586745-55.614679354441
20120.78650991200134969.2018699063973
2013-2.822230918311965.86268502494634
2014-9.53680063783037-42.9902828944924
2015-63.56522080861624.10064779061565
2016-17.362635428763-33.8550659805759
201721.1111731228633-0.00178693298593785
201826.7301185902436-0.321685963041473
2019-10.430039213111713.0772004113277

Get the data:  PxStat PIA10

The chart above presents growth in the Energy input of the Electricity, Gas & Steam sector against oil prices, using an annual dataset from the Federal Reserve of Economic Data (FRED) on Brent Crude Oil prices. Oil or products indexed to oil prices such as gas, are key inputs in electricity generation. It was found that there was a high positive correlation of 74% between Energy inputs in Electricity, Gas & Steam and Oil Prices ($ per barrel) during the years of 2000-2019. Oil prices increased by 29% in 2008 and this may be what led to the large change in Energy inputs in 2008 in the sector. 

Oil prices have been volatile, however the declining trend in the oil price is associated with falls in the contribution of Energy to the Electricity sector. In more recent years the cost structure of Energy input is more difficult to analyse with the increased contribution of renewable energy.

 

Energy InputMaterials InputServices InputCapital InputLabour InputMulti-factor ProductivityGross Output
2000-1.039245432495080.9288174505679722.9831126682821910.30739594743262.65626287665892-6.055968983586179.78037452686039
20010.6666320385312470.9334842240258994.39439426552315.959636731627151.467887842907820.33289429955014613.7549294021654
2002-0.03712283941516940.266139570752498-1.406670492966287.81740905526260.331303092765166-6.736972129529780.234086256869038
2003-0.274025164131968-0.6140021524137453.014822070463032.92356828933110.81731146126665-4.05776502688651.80990947762856
2004-0.858510944563923-0.324113623054157-0.08625103716811244.184588677005612.82741627772542-2.238691779325413.50443757061943
2005-1.03631195607712-1.04264370840031-2.2567881872772615.78823330690292.94479679459852-7.236310682617627.16097556712911
2006-0.246246338026265-0.917611980359672-6.346358437403042.225719710531272.32925578737249-13.5984202843689-16.5536615422541
20070.1720505843637472.7527866480569612.5315857244091.542173672685142.9691790428189111.44050380616431.4082794784977
20081.10195626904798-3.2531784698201620.6815137351458-0.834515459534131-0.2390172939713873.5515058341256621.0082646149938
2009-0.38678205902981210.26595119988361.720841364230811.91320389933579-3.65265829282924-2.57965418008597.28090193150528
2010-1.19694438928594-1.30922107643807-2.909787614984712.75417075054074-1.647136067888651.46292312520936-2.84599527284727
2011-0.681546152265891-0.257847712625607-27.77890930462563.434416843587980.983401014742169-1.49816092838009-25.798646239567
20120.3175494805165374.390579800084795.826184743368192.90583323690184-0.456251234525221-3.879263500717289.10463252562885
20130.4839617165092693.335135233602232.829196505438943.235480369040371.546282477257041.5679238374055212.9979801392534
2014-0.0881370365813776-3.41238592104208-1.8476105875950110.56521698498121.81977534747738-4.312350876561632.72450791067849
20150.237460541203312-2.61865131018784-0.8352923661056185.595854955089370.9293245390393541.27788725404694.58658361308548
20160.053930538332631-4.355711464375171.503859408997982.415472193606731.61283900879027-0.9021591155576130.328230569794834
20170.151645010834044-1.43187025493239-5.2752902087389313.95417494176251.62424469617739-3.295395739567355.72750844553524
2018-0.1825080341792290.3012095978130761.019349333653974.104844116669162.327669598504293.3224790142073410.8930436266686
20190.1293202245909250.01077431697760410.03646229373644425.361679003153651.7245989179214-4.182381685632443.08045307074758

Get the data: PxStat PIA10

The chart above breaks Gross Output growth down into the factor inputs in the Professional, Scientific, Admin & Support Services sector for the years 2000-2019. Gross Output declined in 2019, when compared to 2018, falling from 11% to 3% with the majority of the contributions from Labour and Capital. In general as this sector is predominantly a services-based one, swings in Gross Output are largely explained by changes in the services contribution, however this has become less pronounced in the most recent years. Gross Output growth declined from 31% in 2007 to -26% in 2011 and can be attributed to declining contributions from Materials, Services and Capital. This fall in Gross Output between 2007-2011 was likely caused by the economic recession period as high skilled industries, which have long lead in projects, are likely to witness a gradual decline in output rather than a sudden drop which was seen in industries like Construction and Accommodation and Food. Gross Output in this sector recovers after 2011 and records positive growth every year since 2012, with an average growth rate of 2.7% recorded between 2010-2019.

Energy InputMaterials InputServices InputCapital InputLabour InputMulti-factor ProductivityGross Output
2000-0.1725070562931250.8257808558498443.964653344524476.953732106519482.011590620830564.2312669480434317.8145168194747
20010.283403302645051-2.077395550817898.592206539637658.194179156690260.748236069786878-2.0147113488108313.7259181691311
20020.06786825590538730.1280287517193633.674993980283392.57359659731238-0.2253149397673730.7508277682600546.9700004137132
2003-0.202069048332167-0.364081469363423-7.8226812572861-0.6447828524446431.23562519875314-0.661626642346973-8.45961607102016
2004-0.1552869921222380.3074969590394243.28090564033161-1.601598558152782.1520157159730710.23987567968214.2234084447511
2005-0.138318393122760.2801897192974264.456050922306383.433982856135410.824779491942466-2.490247416536796.36643718002213
2006-0.1600005459810220.276551515067851-0.6179478694781535.869081114743890.8200299972699881.386908952205887.57462316382844
20070.2597112581688610.9599229037013030.3615366995218146.223543332715171.44341263541646-3.659636903020785.58848992650283
2008-0.524299111817161-1.37207792216428-1.459586717155572.692281968527160.906165945363862-3.9487485033046-3.70626434055059
20090.4523345551972931.358435003206213.806924895728630.1733254411264360.796395461126461-4.359203265124712.22821209126032
2010-0.0372778699229815-1.18465087079098-1.24445853617011-5.21917486399903-6.8360721542780117.10478324069662.58314894553549
2011-0.0462525145573926-0.2286614991883710.167927152729415-2.444629087982010.224336166135009-1.9220548493815-4.24933463224485
2012-0.07018212828322380.3262542474301611.634105007976680.0163710447522086-0.0669247729122859-10.440180114202-8.60055671523845
20130.2890810810637520.3576927642090094.711802360929013.405370706255510.791458259539007-9.552857256371170.0025479156251176
2014-0.05511064037675540.160581799762526-1.076506815452448.834589525519210.533613295760959-7.365423909221681.03174325599182
20150.2660367206723230.3444043317853535.107294067844122.933189860589430.2810757957023181.6155389122758310.5475396888694
20160.2158166230156190.18663357837818516.71065245816534.954685374679281.16389003035445-10.766573048558712.4651050160341
20170.01851370368235390.774325350893653.921664973311515.10610702188174-0.622303013863991-2.561158820983556.6371492149217
2018-0.2111606089262840.1064704733077691.679991341626044.219224773965650.149749897729945-1.124481049649514.81979482805361
20190.1026001561082220.1682171041462842.654287801109474.96294748355851.61997306729666-3.41785756892326.09016804329594

Get the data: PxStat PIA10

The changes in Gross Output growth between 2000 and 2019 in the Financial and Insurance sector can largely be explained by changes in Services Input, MFP and Capital. Gross Output growth in the sector for 2019 was 6% and was mostly due to the contribution of 5% from Capital. On the other hand, the decline in Gross Output from 6% in 2007 to -4% in 2008 was mainly due to the fall in the Capital contribution from 6% to 3%, as well as a dip in the Services input. Gross Output was slow to recover in the Financial and Insurance sector as this period was characterised by what was termed a Balance Sheet recession where a period of asset inflation was followed by a crash in these same asset values. The recovery period saw drastic changes in financial regulation as the Central Bank moved towards adopting and implementing macro-prudential policies and this explains, to some extent at least, the slow and steady recovery. Since 2017, growth in Gross Output has averaged 5.6% per annum, due to strong contributions from Capital and Services.

Energy InputMaterials InputServices InputCapital InputLabour InputMulti-factor ProductivityGross Output
2000-1.09985682144431-0.205793558735033-0.05942354573326911.754380290003091.22965642997305-3.06541622965522-1.44645343559169
2001-1.326418711347252.478353189952041.471723388826321.49533710890063-0.0151966203174202-0.0923904501372444.01140790587707
20020.0294068374796755-0.16315933514272-0.162666322863390.8801447069684530.267751816632823-1.30013886479287-0.448661161718027
2003-0.283782533850736-0.7403358219961052.002691842602940.0320087734363041.634909410654641.143039347275563.7885310181226
2004-0.5671099681628642.718392563692641.73513436116541-0.303135790064155-1.541475105887411.270016921146163.31182298188978
2005-1.10088351343873-8.90762067163594-0.6824455113543440.2769112287609091.9212813297766-0.965162025303512-9.45791916319501
2006-0.333167889606869-2.598772625324771.470251711863780.3932382337876521.93242875394206-0.4440420490548220.419936135607029
20070.003016672092102611.361954903111411.912948064091430.3926733513662763.218807982736820.122269296216117.01167026961414
2008-0.3292481718954499.254753201378836.962936140886990.283144040432318-2.340607313873062.3762352774383516.207213174368
20091.99487621944881-11.2108355068727-2.34854230183474-0.274739842271784-1.3554992667279-1.4779084896782-14.6726491879365
2010-2.17589072948514-7.95977355926511-1.3386644071898-0.181249746931103-1.454889294553750.135814963500402-12.9746527739245
2011-0.363846628558208-13.4362506335841-4.09205910048772-0.0616834086206316-2.853789509103063.24627949097864-17.561349789375
20120.80352127947578-3.737078198492752.06586004355744-0.2723668760132751.10306551467854-1.59904968081039-1.63604791760466
20130.580393662782235-2.31202161011017-3.230251403483790.0001089685015373275.09611849342616-0.273034428746813-0.138686317630841
20140.06974658009493981.56255362123182-0.4679920327552250.1013770291139284.04427121806205-0.484723897554034.82523251819348
2015-0.232354515199356-0.427870291453057-3.658334847788690.3774069928058021.181260943471081.63873396745918-1.12115775070504
20161.335492569489122.37419218817125.175461327003960.2239472555616952.992429927658340.5371134990466112.6386367669309
20170.938120294466776-1.743033343107744.182460198854660.2349158677045672.621746134430230.3096091020674656.54381825441596
2018-0.960540097949540.8007651893481492.26125836768891.306054301445754.052261066088320.01613880944552487.4759376360671
20190.5673314249437190.3989176737237281.126492434643761.510244931873891.126984001091770.1531262562885674.88309672256543

Get the data:  PxStat PIA10

Growth in Gross Output and productivity in the Accomodation and Food sectior are largely associated with changes in Labour and Materials consumed in the production process. Since 2017, growth in Services and Labour have averaged approximately 2-3% per annum. The industry experienced a sharp decline in Gross Output after the economic crisis in 2008. Gross Output growth plummeted from 16% in 2008 to -15% in 2009 at the height of the recession and remained negative until 2014. The period also saw lower levels of overall activity and discretionary consumption as many household budgets were impacted by the events of 2008. This resulted in lower levels of demand for Accommodation and Food services. Since 2016, growth in Gross Output has remained positive largely explained by increases in Labour and Services inputs. As household and corporate budgets have increased in recent years, this has led to an increase in demand for Accommodation and Food services.

Energy InputMaterials InputServices InputCapital InputLabour InputMulti-factor ProductivityGross Output
2000-0.213303143590446-0.771151465641936-3.018646099705734.354038219149970.264472679930056-4.54601705903503-3.93060686889312
20010.2412838890138851.522416159720985.127451485086593.777168551853020.475750133089434-2.804031261997548.34003895676637
2002-0.0244075055574803-0.31613306429614811.56356137825962.3604288225430.3337579759025441.0211185831306114.9383261899821
20030.11022840632442-2.45758062596388-5.692049569352581.16414187698429-1.16504842524949-3.88822468161275-11.92853301887
2004-0.194379924769892-1.85607984134395-2.599255566812721.36044738544945-0.4755525148822915.693295331681321.92847486932192
2005-0.07485902916164980.6351490446417214.25316625015531.853121639100421.020521392525231.7750201977342619.4621194949953
20060.06430034475725182.1624504194311913.43386247162552.294556294335970.4235740522733911.4608620811566319.8396056635799
2007-0.0668234517945262-0.788283117784350.8041189282629432.22910297250314-0.05303114391720173.772108156537215.89719234380721
20080.0864522137646268-5.5500803565005116.79810298886532.114428448495980.4632096088044832.929473450956616.8415863543865
2009-0.771769220742849-0.8988176000005131.531936821212561.44478657031972-0.01314697971708160.6858379948253561.97882758589719
2010-0.1076202181376977.465705731064619.17948703478591.43111621649341-1.996344105094620.96996867734977526.9423133364614
2011-0.0677601255298709-2.32518420039764-2.929799075427591.483300833871120.40952170525739-1.44256689592612-4.87248775815271
20120.0692147465220216-0.29848991337087526.62053242625052.848715032863760.188525939945879-2.6170418479111926.8114563843001
20130.3859502439205951.20718694488948-2.621241340824952.114867141912170.44640656429270.1497232383820131.68289279257201
2014-0.0673880079785249-0.19885528220120912.59196403998672.5394916916459-0.003369044624860230.77655114078363515.6383945376116
2015-0.01281548845118340.9766564131629841.578131140264054.033150040461130.175256328908008-0.04744833160652696.70293010273846
20160.100562982578992-0.04358049128874460.7358624092541284.477007006881890.459642254806336-2.416373647878453.31312051435415
20170.1694627838516990.2046605557802740.77381563026455817.22581118535260.740776126899109-9.607473840372329.50705244177591
2018-0.005574523974434420.81806743628485116.66733550541892.181541738410510.07138536820172675.9797156723736925.7124711967152
20190.0178989878786876-0.372648612772751-7.5923563012348913.50404143659980.251806205172196-7.57926357769671-1.77052186205367

Get the data: PxStat PIA10

The chart above decomposes Gross Output growth in the ICT sector into its factor inputs and intermediate inputs. The key input in the production process is Services over the entire period, however on account of large imports in 2017 and 2019, Capital played the dominant role. Gross Output growth in the ICT sector for 2019 was -1.8%, down from 25.7% in 2018. Despite the overall fluctuations for the ICT sector in the Gross Output, GVA growth has remained consistently strong over much of the entire period, with a result of almost 16% in 2019. 

CapitalLabour EnergyMaterialsServices
20008.6335979414474431.50080102629614.6388819159827842.852828391226312.3738907250473
200110.669127849889929.50539727434843.6018412901921243.338073952116412.8855596334532
20029.7525551111943130.45330092343892.6415452527404343.8149088544913.3376898581364
20038.8945060101523531.87341979893052.6619177529014542.566600298525514.0035561394902
20048.899947796139831.35374985321172.5535325421871441.908988648999215.2837811594622
20058.4157332319742933.16971673733212.3751976893180939.745010436776616.2943419045989
20068.2883605955608336.47672299999592.2541917469525735.663205873284717.317518784206
20077.7113623109303138.04557923424082.2444496206676433.718946028151318.27966280601
20085.4376023073435837.02769010407552.3566454629047834.878178520919120.2998836047571
20092.6509060485892337.79997037502023.0283198558482633.668663972580822.8521397479615
20100.84400976498516742.93170937330763.1145580623149528.672522745861524.4372000535308
20110.92211185341519449.26336769581123.1047655068870221.165227439125525.5445275047611
20123.3902202963488151.7361802171593.9012865414261714.51793822791826.454374717148
20136.5065568814414251.04343355400564.6903214991044211.649271868247626.110416197201
20147.8947347639006251.91965674083084.6777520015175511.251035621221424.2568208725297
20159.1544422320866353.34358497798094.0035341771306911.597776356836621.9006622559651
20169.3916739619467453.75665725338033.7553686112031711.644610567559721.45168960591
201710.116963088972251.42541980445734.1995032410631810.376847047049523.8812668184578
201811.976624291484149.72650901553724.498642962116928.8387435698448324.9594801610169
201911.815710517324649.81183278660274.507522342201768.8561894005742325.0087449532967

Get the data: PxStat PIA10

The shares in Gross Output of Energy, Materials, Services, Capital and Labour for the Accommodation and Food sector over the period 2000-2019 are shown in the Figure 9.9. The most significant shares are Labour, Services and Materials, however in recent years the role of labour is becoming more significant in the sector. The Labour share has remained consistently around 50% since 2012. There appears to be some substitution between Materials and Labour in the sector, as the rise in the Labour share has coincided with a relative decrease in the Materials share, falling from 29% in 2010 to just 9% in 2019. For the period since 2008, a Services share of over 20% was reported.

CapitalLabour EnergyMaterialsServices
200035.363527240835216.84445149384481.9260227089780411.387588614617334.4784099417247
200135.921321558661615.14770089967632.1755040030034911.357918442970935.3975550956877
200238.30603098442213.31506959670112.0903241563016310.379778069174435.9087971934009
200338.364080220808312.97560365268872.026905701549739.5036837957354337.1297266292178
200434.975558599478913.36677885818732.515813847048939.3543902494650339.7874584458199
200532.768528275773613.43122263240212.860349591836398.7148382648803442.2250612351076
200631.686753592798113.7619780563743.348155416572428.7573885410680442.4457243931874
200732.465748890156914.24376135938744.056215812390898.9428594870453340.2914144510195
200832.085511413064714.87717657056884.871127346920189.1669631137256838.9992215557206
200932.425944154039714.02416151991094.52502112035798.5918467806881640.4330264250033
201034.645493594254712.73464936395243.850255088077467.1781067385027441.5914952152127
201137.305939375067512.41444313035294.295691268477556.847495719803639.1364305062984
201237.407088082526511.85154399281284.967134082407597.3755864257997638.3986474164533
201335.09951646920111.74100224028595.252035753224487.7013569477665540.2060885895221
201434.846795392744111.63926832449134.569763774677927.414016990153341.5301555179335
201544.38025328357668.930948243907692.789077984560035.6951417039628238.2045787839929
201651.85486013915746.785762142872261.781451648703744.4548072405481135.1231188287185
201751.02373024796266.939298640500731.48411853725094.7018939351669435.8509586391188
201852.30141285780336.780197764105531.175676722278434.6150365895164535.1276760662963
201952.60639834719436.804162852809681.166225237424694.5779354480217534.8452781145496

Get the data: PxStat PIA10

The shares in Gross Output of Energy, Materials, Services, Capital and Labour for the Manufacturing sector over the period 2000-2019 are shown in Figure 9.10. Capital and Services have the most significant share, with the Capital share increasing sharply since 2015. The Capital share in 2019 was 53%, while the Services share was 35%. The impact of the additions to the capital stocks in 2015 in the Capital share resulted in reductions in all other Gross Output shares. The labour share has stayed around 7% since then and this is an indication of the capital-intensive nature of this multinational-dominated sector.


Go to the next chapter: Quality Adjusted Labour Input